Proinov-Type Fixed-Point Results in Non-Archimedean Fuzzy Metric Spaces
نویسندگان
چکیده
Very recently, Proinov introduced a great family of contractions in the setting complete metric spaces that has attracted attention many researchers because very weak conditions are assumed on involved functions. Inspired by Proinov’s results, this paper, we introduce new class fuzzy (in sense George and Veeramani) able to translate framework best advantages abovementioned auxiliary Accordingly, present some results about existence uniqueness fixed points for non-Archimedean spaces.
منابع مشابه
(JCLR) property and fixed point in non-Archimedean fuzzy metric spaces
The aim of the present paper is to introduce the concept of joint common limit range property ((JCLR) property) for single-valued and set-valued maps in non-Archimedean fuzzy metric spaces. We also list some examples to show the difference between (CLR) property and (JCLR) property. Further, we establish common fixed point theorems using implicit relation with integral contractive condition. Se...
متن کاملFixed point results in fuzzy metric-like spaces
In this paper, the concept of fuzzy metric-like spaces is introduced which generalizes the notion of fuzzy metric spaces given by George and Veeramani cite{Vee1}. Some fixed point results for fuzzy contractive mappings on fuzzy metric-like spaces are derived. These results generalize several comparable results from the current literature. We also provide illustrative examples in support of ou...
متن کاملNon-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملA New Approach to Caristi's Fixed Point Theorem on Non-Archimedean Fuzzy Metric Spaces
In the present paper, we give a new approach to Caristi's fixed pointtheorem on non-Archimedean fuzzy metric spaces. For this we define anordinary metric $d$ using the non-Archimedean fuzzy metric $M$ on a nonemptyset $X$ and we establish some relationship between $(X,d)$ and $(X,M,ast )$%. Hence, we prove our result by considering the original Caristi's fixedpoint theorem.
متن کاملSOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES
In this paper, we introduce the notions of fuzzy $alpha$-Geraghty contraction type mapping and fuzzy $beta$-$varphi$-contractive mapping and establish some interesting results on the existence and uniqueness of fixed points for these two types of mappings in the setting of fuzzy metric spaces and non-Archimedean fuzzy metric spaces. The main results of our work generalize and extend some known ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9141594